《机器学习》升级版III,从理论到实践,邹博主讲 扫二维码继续学习 二维码时效为半小时

(7评价)
价格: 899.00元

   

课程名称:

《机器学习》升级版III

主讲老师:

邹博      小象学院独家签约

计算机博士;现在科学院从事科研教学工作,主持国家级科研项目2个,副负责1个;研究方向机器学习、数据挖掘、计算几何。近年来从事机器学习的社会化培训工作,学员过万,擅长机器学习核心算法推导和原理分析,并给出代码实现。

课程目标:

本课程特点是从数学层面推导经典的机器学习算法,以及每种算法的示例和代码实现(Python)、如何做算法的参数调试、机器学习算法的应用场景介绍等。

开课时间:

201712日,共26次课,每次2小时

学习方式:

在线直播,共26

每周3次(周一、三、五,晚上20:00-22:00

直播后提供录制回放视频,在线反复观看,有效期1

升级版III的内容特色:

1,增加5次“机器学习的角度看数学”和2次“Python与机器学习”,提升学习深度,降低学习坡度。

2,强化矩阵运算、概率论、数理统计的知识运用,掌握机器学习根本。

3,阐述机器学习原理,提供配套源码和数据;确保“懂推导,会实现”。

4,删去过于晦涩的公式推导,代之以直观解释,增强感性理解。

5,重视项目实践(如工业实践、Kaggle),重视落地。

6,重视将实践问题转换成实际模型的能力,分享实际案例。

7,对比不同的特征选择带来的预测效果差异。

8,思考不同算法之间的区别和联系,提高在实际工作中选择算法的能力。

9,涉及和讲解的部分Python库有:Numpy/Scipy/matplotlib/Pandas/scikit-learn/XGBoost/libSVM/LDA/Gensim/NLTK/HMMLearn

10,每个算法模块按照“原理讲解->自己动手实现->使用已有机器学习库”的顺序,切实做到“顶天立地”。

课程大纲

1、机器学习的数学基础1 - 数学分析

机器学习的一般方法和横向比较

数学是有用的:以SVD为例

机器学习的角度看数学

复习数学分析

直观解释常数e

导数/梯度

随机梯度下降

Taylor展式的落地应用

gini系数

凸函数

Jensen不等式

组合数与信息熵的关系

2、机器学习的数学基础2 - 概率论与贝叶斯先验

概率论基础

古典概型

贝叶斯公式

先验分布/后验分布/共轭分布

常见概率分布

泊松分布和指数分布的物理意义

协方差(矩阵)和相关系数

独立和不相关

大数定律和中心极限定理的实践意义

3、机器学习的数学基础3 - 数理统计与参数估计

统计量

期望/方差/偏度/峰度

中心矩/原点矩

估计

深刻理解最大似然估计

过拟合的数学原理与解决方案

最大后验估计MAP

偏差方差二难

4、机器学习的数学基础4 - 矩阵和线性代数

线性代数在数学科学中的地位

马尔科夫模型

矩阵乘法的直观表达

状态转移矩阵

矩阵和向量组

特征向量的思考和实践计算

QR分解

对称阵、正交阵、正定阵

数据白化及其应用

向量对向量求导

标量对向量求导

标量对矩阵求导

5、机器学习的数学基础5 - 优化

凸集的严格数学表达

凸集保运算

分割超平面/支撑超平面

凸函数/上境图

Jensen不等式

Fenchel不等式

K-L散度

优化

共轭函数和对偶函数

鞍点解释

用对偶方法求解最小二乘问题

强对偶KKT条件

6Python基础1 - Python及其数学库

解释器Python2.7IDEAnaconda/Pycharm

Python基础:列表/元组/字典//文件

Taylor展式的代码实现

numpy/scipy/matplotlib/panda的介绍和典型使用

多元高斯分布

泊松分布、律分布

典型图像处理

7Python基础2 - 机器学习库

scikit-learn的介绍和典型使用

损失函数的绘制

多种数学曲线

多项式拟合

快速傅里叶变换FFT

奇异值分解SVD

Soble/Prewitt/Laplacian算子与卷积网络

卷积与(指数)移动平均线

股票数据分析

8、回归与特征选择

线性回归

高斯分布

最大似然估计

L1/L2正则化

RidgeLASSO

Elastic Net

梯度下降算法:BGDSGD

特征选择与过拟合

9Logistic回归

Sigmoid函数的直观解释

Softmax回归的概念源头

Logistic/Softmax回归

最大熵模型

K-L散度

损失函数

10、回归实践

机器学习sklearn库介绍

回归代码实现和调参

Ridge回归/LASSO/Elastic Net

Logistic/Softmax回归

广告投入与销售额回归分析

鸢尾花数据集的分类

回归代码实现和调参

交叉验证

数据可视化

11、决策树和随机森林

熵、联合熵、条件熵、KL散度、互信息

最大似然估计与最大熵模型

ID3C4.5CART详解

决策树的正则化

预剪枝和后剪枝

Bagging

随机森林

不平衡数据集的处理

12、随机森林实践

随机森林与特征选择

决策树应用于回归

多标记的决策树回归

决策树和随机森林的可视化

葡萄酒数据集的决策树/随机森林分类

13、提升

提升为什么有效

Adaboost算法

加法模型与指数损失

梯度提升决策树GBDT

14XGBoost

自己动手实现GBDT

XGBoost库介绍

Taylor展式与学习算法

KAGGLE简介

泰坦尼克乘客存活率估计

15SVM

线性可分支持向量机

软间隔的改进

损失函数的理解

核函数的原理和选择

SMO算法

支持向量回归SVR

16SVM实践

libSVM代码库介绍

原始数据和特征提取

调用开源库函数完成SVM

SVR用于时间序列曲线预测

SVMLogistic回归、随机森林三者的横向比较

17、聚类

各种相似度度量及其相互关系

Jaccard相似度和准确率、召回率

Pearson相关系数与余弦相似度

K-meansK-Medoids及变种

AP算法(Sci07)/LPA算法及其应用

密度聚类DBSCAN/DensityPeak(Sci14)

谱聚类SC

聚类评价和结果指标

18、聚类实践

K-Means++算法原理和实现

向量量化VQ及图像近似

并查集的实践应用

密度聚类的代码实现

谱聚类用于图片分割

19EM算法

最大似然估计

Jensen不等式

朴素理解EM算法

精确推导EM算法

EM算法的深入理解

混合高斯分布

主题模型pLSA

20EM算法实践

多元高斯分布的EM实现

分类结果的数据可视化

EM与聚类的比较

Dirichlet过程EM

三维及等高线等图件的绘制

主题模型pLSAEM算法

21、贝叶斯网络

朴素贝叶斯

贝叶斯网络的表达

条件概率表参数个数分析

马尔科夫模型

D-separation

条件独立的三种类型

Markov Blanket

混合(离散+连续)网络:线性高斯模型

Chow-Liu算法:最大权生成树MSWT

22、朴素贝叶斯实践

GaussianNB

MultinomialNB

BernoulliNB

朴素贝叶斯用于鸢尾花数据

朴素贝叶斯用于18000+篇新闻文本的分类

23、主题模型LDA

贝叶斯学派的模型认识

共轭先验分布

Dirichlet分布

Laplace平滑

Gibbs采样详解

24LDA实践

网络爬虫的原理和代码实现

停止词和高频词

动手自己实现LDA

LDA开源包的使用和过程分析

Metropolis-Hastings算法

MCMC

LDAword2vec的比较

25、隐马尔科夫模型HMM

概率计算问题

前向/后向算法

HMM的参数学习

Baum-Welch算法详解

Viterbi算法详解

马尔科夫模型的应用优劣比较

26HMM实践

动手自己实现HMM用于中文分词

多个语言分词开源包的使用和过程分析

文件数据格式UFT-8Unicode

停止词和标点符号对分词的影响

前向后向算法计算概率溢出的解决方案

发现新词和分词效果分析

高斯混合模型HMM

GMM-HMM用于股票数据特征提取

联系方式:

1、参团后,请客服微信:18600475565

2、手机:18600475565

3、邮件:admin@chinahadoop.cn

4、网站:http://www.chinahadoop.cn